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The melting-point depression of a random copolymer with comonomer exclusion from the crystalline phase 
is investigated. The analysis is based on simulation results obtained with an extended Sadler-Gilmer 
crystallization model. Apparent copolymer melting points T,p(l) of lamellae of finite thickness I are 
observed. Further thickening is entropically suppressed. It is shown that the average lamellar thickness 
and the minimum thermodynamically stable thickness converge at Tzp. The fine-grained nature of the 
model reveals an entropic contribution to the melting-point depression, which is due to the so-called blind 
attachment of chain segments to the growth face. Our new ‘kinetic’ melting-point equation is compared 
with the ‘equilibrium’ result by Flory and shows a considerably stronger melting-point depression. 
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INTRODUCTION 

The calculation and interpretation of melting points 
is an issue of primary importance. It is central to the 
very practical problem of handling experimental data. 
Our understanding of the melting-point depression of 
copolymer crystals is based mainly on the equilibrium 
theory by Flory’ and some extended versions thereofzT3. 
The assumption in the interpretation of experimental 
data has tended to be that an adjustment of the 
supercooling AT by the difference between the equilibrium 
copolymer melting point T~*cOp and the equilibrium 
homopolymer melting point T,” enables the usual 
equations for homopolymers to be employed. The 
lamellar thickness, for example, is predicted2 to be 
inversely proportional to the copolymer supercooling, 
therefore going to infinity as T~qcOp is approached. This 
is a drastic ad hoc assumption, which is most certainly 
not valid, at least in the light of simulation results 
presented in a previous paper4. As described there, the 
model copolymer shows a ‘natural’ or ‘in-built’ limit to 
the lamellar thickness as a result of non-crystallizable 
chain segments. 

The following analysis of the forces at work in the 
kinetics of copolymer crystallization aims to explain the 
origin of this phenomenon and the associated melting- 
point depression. 

MODEL AND SUMMARY OF SIMULATION 
RESULTS 

The model employed (Figure I) is an extension4 of the 
Sadler-Gilmer mode15, which envisages polymer crystal- 
lization as a process of ‘blind’ attachment and detach- 
ment of small chain segments at the outermost position. 
At any stage of building up a straight sequence traversing 
the lamella (a so-called ‘stem’), a new stem can start 
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forming adjacently, thereby blocking further growth of 
the previously outermost stem. 

This process can be interpreted as describing either 
regular adjacent chain folding along the growth face, 
therefore providing a model of a layer on a flat growth 
face, or ‘rough surface growth’ with the stems represent- 
ing the laterally uncorrelated growth layers, in which case 
we have a simplified model of the whole lamellar crystal. 

During crystallization many configurations (1,J (Figure 
I) are explored before material gets finally incorporated 
into the ‘bulk’ of the crystal. This leads to a limitation 
in the fold length, which is entropic in naturess6, rather 
than enthalpic like in secondary nucleation models’*‘. 

This fine-grained approach lends itself to the simulation 
of an A-B copolymer. The model which was put forward 
in a previous paper4 is based on the conjecture that the 
presence of non-crystallizable (B) chain segments leads 
to a progressively reduced rate constant for attachment 
with increasing thickness. The simulation demonstrated 
that with increasing crystallization temperature the 
average lamellar thickness does not increase beyond a 
certain maximum value. This point, at which steady-state 
growth ceases, defines an apparent copolymer melting 
point TZP. In the present paper we are going to 
derive an analytical expression for Tz* based on the 
Sadler-Gilmer model. 

ANALYSIS OF GROWTH KINETICS 

Introduction 

In any kinetic theory of polymer crystallization6-9 the 
average growth rate G of an ensemble of lamellae of 
average thickness 1 can be separated into a product of 
a barrier term a,(l) and a driving force term d(61) 
(Figure 2), where 6E= I- I,, and I, is the minimum 
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Figure 1 Schematic representation of the Sadler-Gilmer row model. 
Attachments and detachments are only allowed at the outermost end 
of the row (that is at k = 1) because other surface sites are 'pinned' by 
folds and loops. The length may be increased or decreased by one unit, 
stems of length unity can be removed, and a new stem of one unit can 
be created adjacent to the previous outermost stem at any stage 

thermodynamically stable thickness: 

G = kao(l)d(rl) (1) 

The barrier term is responsible for limiting the lamellar 
thickness as observed by experiment. Its precise origin, 
however, is a matter of great dispute. There are essentially 
two opposing models: 

(i) The so-called nucleation models 7,a envisage some 
kind of high-energy barrier due to the need for 
secondary nucleation of stems. 

(ii) 'Entropy barrier' models s'6'9, to which group the 
present model belongs, emphasize the importance 
of the configurational path degeneracy of the 
long-chain molecule. In the attachment process 
this leads to an entropic contribution to the surface 
free energy, as described briefly in the previous 
section. 

Both models predict a similar exponential dependence of 
the growth barrier on lamellar thickness. 

The driving force, on the other hand, is generally 
thought to be related to the thermodynamically derived 
Gibbs free energy. In the presence of non-crystallizable 
chain segments, however, the envisaged mode of chain 
attachment----vomplete stems or small units--does affect 
the driving force term as well as the barrier. It will be 
shown that this has a strong influence on the expected 
copolymer melting behaviour. 

An analytical expression for the driving force can be 
given in a first approximation by the Wilson-Frenkel 
law, which describes the growth at a kink site (German: 
Halbkristallage), i.e. a site at which addition or subtrac- 
tion of a solid cell does not change the number of 
solid-fluid neighbours: 

d(61) = 1 - exp(-  6f/kT) (2) 

where 6f is the net free-energy difference between the 
phases: 

6f = Af  - (tre + tr'¢)/l (3) 

Here a, and tr'~ are the free energies of the top and bottom 
end surfaces of a lamella of thickness I and infinite lateral 
extent. The bulk free-energy difference Af can be 
approximated by: 

Af =hAT/T  ° (4) 

where h is the heat of fusion at the equilibrium melting 
point T °.  With the condition that 6f = 0 at l= I m we get 
the Gibbs-Thomson relation: 

hAT/T ° = (~ + a'~)/lm (5) 

so that 

A T f l  
6f = h - -  -- (6) 

TOt 

Eventually, with equation (2) this leads to the following 
approximation of the driving force at low supercoolings: 

h A T r l  
d(61) = (7) 

k r r °  l 

In the homopolymer case 6 61 is approximately constant, 
and the driving force goes to zero only as AT goes to 
zero while l goes to infinity. 

Copolymer simulation: minimum thickness and driving 
force 

In the following the minimum thermodynamically 
stable thickness in the copolymer simulation model will 
be investigated. 

In order to proceed we need to recall briefly some of 
the terminology of the Sadler-Gilmer rate theory 
model 5'6. The state variable is the probability distri- 
bution P(i,j) of lengths i and j of adjacent stems at the 
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0 Growth rate (x I0 -8) 
n Barrier term(xlO "5) 
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Growth rate G at a fixed supercooling as a product of barrier 
term a o and driving force term d. The lamdlar thickness gets selected 
such that G is maximized. The 'force' is given in arbitrary units, the 
thickness is scaled by the length of a growth unit. (Numerical example 
calculated with the Sadler-Gilmer model 6) 
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Figure 3 Driving force contribution for different thicknesses at a given 
supercooling. Extrapolation of the linear regime (b) to zero driving 
force yields the minimum thickness I m 

given above. Assuming a linear dependence for small AT 
like in equation (7), an estimate of lm is obtained by linear 
extrapolation of regime (b) to zero driving force. This 
provides a minimum thickness curve /re(AT), which in 
combination with the average thickness /(AT) yields 
6I(AT), and therefore a measure of the driving force 
dependence on supercooling. 

In the homopolymer case Sadler and Gilmer 6 have 
found that 61 is approximately constant. The driving 
force decreases with decreasing supercooling only through 
an increasing lamellar thickness (see equation (7)). This 
is in agreement with other crystallization models and 
interpretations of experimental results 7. 

The model copolymer shows a very different behaviour, 
however (Figure 4). The minimum thickness I m and the 
average thickness l converge as the crystallization 
temperature approaches Tm ~°p. The driving force decreases 
and eventually vanishes at the copolymer melting point 
as the lamellar thickness cannot increase because of 
the decreasing concentration of crystallizable chain 
segments. 

This result was confirmed by values of Im obtained 
directly by simulation. Lowering the maximum stem 
length N until this constraint brings the growth rate to 
zero yielded upper limits for Ira, shown as diamonds in 
Fioure 4. This method was described in more detail in 
ref. 6. 
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Figure 4 Average and minimum lamellar thickness of the model 
copolymer. The various methods by which the minimum thicknesses 
have been calculated are explained in the text. The concentration p of 
non-crystallizable segments in this example is p=0.95. The tempera- 
tures are scaled by T ° 

growth front (see Figure 1). This steady-state distribution 
at a given supercooling AT is the basis for the calculation 
of average thickness and growth rate. Likewise, the 
driving force d(i) for different thicknesses i= 1,2 . . . . .  N 
(where N is so large that P(N,j) is small) can be evaluated. 
Typically, three regimes can be distinguished (Figure 3)." 
(a) for small i the driving force is almost zero; (b) around 
the average thickness I, d(i) increases almost linearly; and 
(c) for large i the driving force reaches a plateau. This 
behaviour is consistent with the analytical expression (2) 

Analysis of copolymer free energy and melting-point 
depression 

In this section we are going to approach the evaluation 
of the copolymer driving force analytically on the basis 
of equations (3) and (4). This will eventually lead us to 
a copolymer melting-point depression equation. 

In the homopolymer case equations (3) and (4) 
combine to give the Gibbs-Thomson equation (5). Using 
an equilibrium expression of the surface free energy of a 
two-dimensional 'solid-on-solid' model/m(AT) has been 
derived 6. 

Application of this method to copolymers requires 
some modifications. As Richardson, Flory and Jackson 1° 
pointed out, the free-energy expression (3) must be 
amended, because the 'temperature at which a crystallite 
melts depends not only on its dimensions but also on the 
chemical potential of A sequences of the required length 
in the adjoining melt phase'. Under ideal solution 
conditions this leads to the following equilibrium 
free energy for a random copolymer of A-sequence 
perpetuation probability p: 

Af°p=hA T/ T° + k T ln p (8) 

and to the well known Fiery 1 equilibrium melting-point 
depression formula: 

kTO \ -  1 
T°'C°"= T ° 1 - Z ~ l n p )  (9) 

which gives the melting point of crystallites in the limit 
of infinite thickness. Although this is the correct 
thermodynamic melting point, it sets conditions that 
cannot normally be reached experimentally 11. In par- 
ticular, the preferential ordering of copolymer chains into 
A sequences of matching sequence lengths is required. In 
contrast, the picture emerging from our simulation results 
is that the crystallization kinetics, in particular the 
mechanism of 'blind attachment' of small chain segments 
from A sequences of various lengths, actually prevents 
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Figure 5 Melting-point depression with respect to T ° for lamellae of 
finite thickness according to Flory, equation (16), and our own result, 
equation (15). The following parameters were implemented in this 
example: p=0.95, e=kT°m/0.35, h=2e, ae=a'e=e/2 

this ordering and therefore the formation of very thick 
crystallites. (Further thickening at a later stage is also 
unlikely because of the accumulation of non-crystalliz- 
able material on the surfaces. In fact, isothermal 
thickening is not observed in ethylene copolymers2.) As 
we shall see, this is reflected in an additional entropic 
contribution to the free energy, which is revealed by our 
fine-grained model. 

Consider the crystallization of a random copolymer, 
as schematically depicted in Fioure 1, building up each 
stem segment by segment. The first segment in a stem is 
assumed to be an A unit with probability 1. It contributes 
an enthalpy hAT/T  ° .  The second unit is an A unit with 
probability p and in addition to its enthalpy contributes 
a mixing entropy $2 = - k  In p. In the same way the ith 
unit contributes an entropy: 

Si = - k In p(i- 1) (10) 

The free energy of the rate model copolymer lamella of 
average thickness l can now be obtained by summing 
over the normalized thickness distribution C(i): 

h A T ( ~ i C ( i ) ) + k T ( ~ t C ( i ) ~  l ) lnp)  lAfcop- Tm 0 \ i - -~ l  '= j = l  (j- 

hence 

(11) 

= ~ - + W 7  i zc ( i ) - I  lnp (12) 
i=1 

This expression can be simplified if we assume the 
distribution C(i) to be Gaussian, so that ~v= 1 i2C(i) = 12m : 

hAT l -  1 
A f c o p = - - + k T  lnp (13) 

T ° 2 

When the lamella is in equilibrium with the surrounding 
melt we get the following free-energy equation: 

haT ~ (tre + o"e) e°v 
TO m ~-kTm lnp= lm (14) 

Solving for T m we finally obtain a new melting-point 
depression equation for copolymer lamellae of finite 
thickness: 

Tm(Im)-- TOm (1 (O'e -'F °"e)c°P~ (1 
hlm J \  

lm__l  kTOm \-1 ~ lnp) 

(15) 

Note that here the thickness must be given in terms of 
numbers of growth units. 

The corresponding 'thin-crystar expression within the 
framework of Flory theory 2 can be obtained by simply 
substituting the Flory copolymer free-energy expression 
(8) into (3) so as to account for the surface free-energy 
contribution. This yields: 

7mV'°'Y(lm)= T ° 1 hlm ] 1 - ~ l n p )  (16) 

We are now in a position to make a direct comparison 
between our new formula (15) and the 'Flory-Sanchez- 
Eby' result (16): (i) Both expressions take account of the 
surface free-energy contribution via a Gibbs-Thomson 
term (first term in (15) and (16)). (ii) The depression 
caused by the non-crystallizable sequences is described 
by the second term. In the equilibrium theory this is 
independent of thickness, relating to the final melting of 
crystallites made of infinitely long sequences. In contrast, 
in our 'kinetic' theory the copolymer depression term is 
inherently thickness-dependent via the additional factor 
(Ira--1)/2. It has its origin in the counting argument of 
our derivation of the mixing entropy. Its effect is a 
stronger melting-point depression. As pointed out in a 
previous paper 4 this is indeed consistent with some 
experimental evidence 11. A numerical example comparing 
both formulae is shown in Figure 5. The difference is 
almost negligible for very thin lamellae but becomes 
significant as the thickness increases towards the 
entropically feasible maximum. The new melting-point 
formula (15) has a maximum there, indicating that 
thicker crystals have in fact a lower melting point because 
of the 'entropic factor' (lm- 1)/2. The equilibrium formula 
(16), on the other hand, approaches the Flory melting 
point given by equation (9) as l goes to infinity. 

In order to demonstrate that our new free-energy 
equation (14) is consistent with the simulation results we 
will in the following use this formula to calculate a 
minimum-thickness curve. As an expression for the 
equilibrium surface free energy of the copolymer system 
is not known, we are going to derive a semi-theoretical 
expression based on the simulation results. The simula- 
tion yields the average difference in length of adjacent 
stems (Figure 6): 

s( T)= ~i,j[i-j[Pi,j( T ) (17) 

This is a measure of the entropic contribution to the 
surface free energy. As the enthalpy is simply the bond 
energy e/2, we can write for the copolymer surface free 
energy: 

o'ec°p(T) = /~ /2  - -  Cs(T) (18) 

for the top surface, and 

a~°P'(T)=e/2 (19) 
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The formulae derived can in principle be applied 
directly to experimental melting-point data of lamellar 
copolymer crystals. They should contribute to the 
interpretation of experiments wherever non-equilibrium 
effects are significant. In those cases the observed 
melting-point lowering is generally much bigger than 
given by the Flory equation 11. In practice, however, the 
end-surface free energy is often not known, and the 
determination of the thickness of the actual crystalline 
layer, e.g. via the X-ray long spacing and the 'two-phase' 
model, can only provide a rough estimate. 

Furthermore, the model discussed here requires the 
total exclusion of comonomer units, which is generally 
not the case in real copolymer crystals 13. However, the 
trend will remain the same even if comonomers are 
partially incorporated as defects because the mechanism 
of 'blind attachment' is still at work. This has been 
demonstrated by simulation of such systems 14. Further 
work investigating the effects of defects in polymer 
crystals is under way. 

In conclusion, the melting-point depression of copoly- 
mers studied in this paper has proven to be a further 
example of the significance of a 'fine-grained' approach 
in the modelling of polymer crystallization and melting 
behaviour. 

for the straight bottom surface. The unknown propor- 
tionality constant C is evaluated by inserting (18) and 
(19) into (14) and enforcing that/m = l at the copolymer 
melting point T~ °p as determined by simulation. This 
finally allows the calculation of the /,.(AT) values 
(circles in Figure 4), which agree very well with the values 
determined by the other methods described above. This 
consistency is a further corroboration of the new 'kinetic' 
copolymer melting-point depression equation (15). 

CONCLUDING REMARKS 

An analysis of the driving force in the Sadler-Gilmer rate 
theory model of copolymer crystallization 4 has helped 
us understand better the melting at finite thickness 
occurring in the simulation. Furthermore, it has led to a 
new free-energy expression and a melting-point depres- 
sion relation for a random copolymer crystal of finite 
thickness, which involve an additional mixing entropy. 
The latter is due to the mechanism of 'blind attachment' 
inherent in the model. We believe this to be a more 
realistic picture of the crystallization kinetics than the 
ideal equilibrium demixing of matching A sequence 
lengths envisaged by Flory 1. If such a fractionation 
process occurred to some extent during crystallization, 
it would obviously influence the A sequence statistics and 
raise the melting point. 
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